Skip to content
Snippets Groups Projects
Commit be18f357 authored by Effi Latiffianti's avatar Effi Latiffianti
Browse files

Upload New File

parent 657b35ef
No related branches found
No related tags found
No related merge requests found
#Following function implements the LoMST algorithm and returns the anomaly indices and number of true detection for a preselected k value and a cut-off value
LoMSTEDP=function(selectedk){
nn <- kNN(data, k=selectedk)
kn=as.matrix(nn$id)
for(i in 1:nrow(data))
{
nam<- paste("dist", i, sep = "")
assign(nam, as.matrix(dist(data[c(i,kn[i,]),])))
}
sumhist=numeric(nrow(data))
compare=numeric(nrow(data))
for(i in 1:nrow(data)){
d=get(paste("dist", i, sep = ""))
mat=as.matrix(dino.mst(d))
d[which(mat== 0)] <- 0
sumhist[i]=sum(d)}
for(i in 1:nrow(data)){
compare[i]=sumhist[i]-mean(sumhist[c(kn[i,])])}
summary=as.data.frame(compare)
summary$obs=c(1:nrow(data))
sumhistarranged=as.data.frame(arrange(summary,desc(compare)))
#listofoutliers=sumhistarranged$obs[1:N]
dat$d=c(1:nrow(data))
required=dat[,c(1,ncol(dat))]
names(required)=c("timestamp","obs")
final=as.data.frame(merge(sumhistarranged,required,by=c("obs")))
final$Outlier_Score=(final$compare-min(final$compare))/(max(final$compare)-min(final$compare))
finalarranged=as.data.frame(arrange(final,desc(compare)))
#success=as.numeric(table(finalarranged$`Outlier status`[1:N])[2])
#RESULT <- list("anomaly_indices" = listofoutliers, "number_of_true_detection" = success)
return(finalarranged)}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment