Skip to content
Snippets Groups Projects
Commit 43890d25 authored by JuanPi Carbajal's avatar JuanPi Carbajal
Browse files

inference: fundamental equations

parent 631db81b
No related branches found
No related tags found
No related merge requests found
% !TEX program = xelatex
\PassOptionsToPackage{usenames,dvipsnames}{xcolor}
\documentclass[aspectratio=169,20pt, USenglish]{beamer}
\usetheme{ost}
\input{include/beamer_basics.tex} % PACKAGES
\input{include/mathsymbols.tex} % SYMBOLS
% lower case math
\usepackage[cal=boondoxo]{mathalfa}
% Change math fonts
\usefonttheme[onlymath]{serif}
% Show notes
\usepackage{pgfpages}
%\setbeameroption{show notes on second screen=bottom}
\setbeamertemplate{note page}[plain]
\makeatletter
\def\beamer@framenotesbegin{% at beginning of slide
\usebeamercolor[fg]{normal text}
\gdef\beamer@noteitems{}%
\gdef\beamer@notes{}%
}
\makeatother
% do not color links
\hypersetup{colorlinks=false}
% To show videos
\usepackage{multimedia}
\graphicspath{{../static/img/}}
\title{Introduction to recursive probabilistic learning}
\subtitle{Inference}
\date{08.10.2021}
\author{JuanPi Carbajal}
\institute{Institute for Energy Technology}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 90 min
\section{Recap and Q\&A}
\interludeframe{\textbf{\large Recap and Q\&A}}
% TODO: Propagate errors to measurement
\section{Conditional probability}
\interludeframe{\textbf{\large Conditional probability}}
% Plausible reasoning
% Probability as logic
% Contingency table
% Probability
% Conditional probability
% Factorization of the joint probability
% TODO: Propagation errors to measurement as marginalization
% \input{include/probability.tex}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \interludeframe{\textbf{\large Coffee break: 20 minutes}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 100 min
\section{Gaussian Distribution}
\interludeframe{\textbf{\large Gaussian (Normal) distribution}}
% Distribution of Jointly Gaussian variables
% Conditional distribution of Gaussian variables
\input{include/mvnormal_distribution_conditioning.tex}
\section{Update step}
\interludeframe{\textbf{\large Update step}}
% Noisy iterated map with measurement
% Conditional distribution of Gaussian variables
% Update step
\input{include/update_step.tex}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\interludeframe{\textbf{\large Lunch: 1 hour 30 minutes}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 60 min
\section{Data driven models}
\interludeframe{\textbf{\large Data driven models}}
% What's data driven?
% recursive linear regression
% recursive delayed regression
% Polynomial regression
% Recursive extreme learning
% \input{include/data_driven_models.tex}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\interludeframe{\textbf{\large Coffee break: 30 minutes}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 60 min
\section{Parameter estimation}
\interludeframe{\textbf{\large Parameter estimation}}
% Online parameter update
% Augmented state
% Maximum likelihood
% Batch regression of historical data: functional analysis, etc.
% \input{include/parameter_estimation.tex}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 60 min
\section{Wrap-up}
\interludeframe{\textbf{\large Wrap-up}}
\end{document}
......@@ -35,4 +35,3 @@
\DeclareMathOperator*{\GP}{\mathcal{G}\!\mathcal{P}} % Gaussian process
\newcommand{\ccov}[1]{{\color{red}k}\left(#1\right)}
\newcommand{\cmean}[1]{{\color{blue}m}\left(#1\right)}
\begin{frame}{Distribution of Jointly Gaussian variables}
\[
\gaussian(\bm{x}| \bm{m}, \tens{P}) = \frac{1}{\sqrt{(2\pi)^n\det{\tens{P}}}}
\exp{-\frac{1}{2}\left(\bm{x} - \bm{m}\right)^\trp \tens{P}^{-1}\left(\bm{x} - \bm{m}\right)}
\]
\begin{columns}[t]
\column{0.5\textwidth}
\[
\begin{bmatrix} \bm{x} \\ \bm{y}\end{bmatrix}
\sim \gaussian\left(\begin{bmatrix}\bm{a} \\ \bm{b}\end{bmatrix},
\begin{bmatrix}\tens{A} & \tens{C} \\ \tens{C}^\trp & \tens{B}\end{bmatrix}\right)
\]
\begin{align*}
\bm{x} &\sim \gaussian(\bm{a},\tens{A})\\
\bm{y} &\sim \gaussian(\bm{b},\tens{B})\\
\bm{x} | \bm{y} &\sim \gaussian(\bm{a} + \tens{C}\tens{B}^{-1}(\bm{y} - \bm{b}),
\tens{A} - \tens{C}\tens{B}^{-1}\tens{C}^\trp)\\
\bm{y} | \bm{x} &\sim \gaussian(\bm{b} + \tens{C}^\trp\tens{A}^{-1}(\bm{x} - \bm{a}),
\tens{B} - \tens{C}^\trp\tens{A}^{-1}\tens{C})
\end{align*}
\column{0.5\textwidth}
\begin{align*}
\bm{x} &\sim \gaussian(\bm{m}, \tens{P})\\
\bm{y} | \bm{x} &\sim \gaussian(\tens{H}\bm{x} + \bm{u}, \tens{R})\\
\end{align*}
\begin{align*}
\begin{bmatrix} \bm{x} \\ \bm{y}\end{bmatrix} &
\sim \gaussian\left(\begin{bmatrix}\bm{m} \\ \tens{H}\bm{x} + \bm{u}\end{bmatrix},
\begin{bmatrix}\tens{P} & \tens{P}\tens{H}^\trp \\ \tens{H}\tens{P} & \tens{H}\tens{P}\tens{H}^\trp + \tens{R}\end{bmatrix}\right)\\
\bm{y} | \bm{x} &\sim \gaussian(\tens{H}\bm{x} + \bm{u}, \tens{H}\tens{P}\tens{H}^\trp + \tens{R})
\end{align*}
\end{columns}
\note<1>{
- Schur complement
- An interpretation of the conditional mean?
- Do exercise 3.5 from the book
}
\end{frame}
\ No newline at end of file
\begin{frame}{Update step}
\begin{align*}
\mathcal{p}(\bm{x}_k|\bm{y}_{1:k}) &\propto \mathcal{p}(\bm{y}_k|\bm{x}_{k}) \mathcal{p}(\bm{x}_k|\bm{y}_{1:{k-1}})\\
\mathcal{p}(\bm{x}_k|\bm{y}_{1:{k-1}}) &= \bm{\int}{\mathcal{p}(\bm{x}_k|\bm{x}_{k-1}) \mathcal{p}(\bm{x}_{k-1}|\bm{y}_{1:{k-1}})\ud \bm{x}_{k-1}}
\end{align*}
\begin{align*}
\tens{S}_k &= \tens{H}_k \hat{\tens{P}}_k \tens{H}_k^\trp + \tens{R}_k\\
\tens{K}_k &= \hat{\tens{P}}_k \tens{H}^{\trp}\tens{S}_k^{-1}\\
\bm{m}_k &= \hat{\bm{m}}_k + \tens{K}_k\left(\bm{y}_k - \tens{H}_k \hat{\bm{m}}_k\right)\\
\tens{P}_k &= \hat{\tens{P}}_k - \tens{K}_k \tens{S}_k \tens{K}_k^{\trp}
\end{align*}
\note<1>{
- propagation of uncertainty to output using best estimate
- kalman gain
- update mean by projecting error on kalman gain
- update cov by propagating uncertainty on measurement backward
}
\end{frame}
\begin{frame}{Kalman filter}
Predict (while no measurement):
\begin{align*}
\hat{\bm{m}}_k = \tens{A}_k\bm{m}_{k-1}\\
\tens{P}_k = \tens{A}_k\tens{P}_{k-1}\tens{A}_k^\trp + \tens{Q}_{k-1}
\end{align*}
Update (condition on measurement):
\begin{align*}
\tens{S}_k &= \tens{H}_k \hat{\tens{P}}_k \tens{H}_k^\trp + \tens{R}_k\\
\tens{K}_k &= \hat{\tens{P}}_k \tens{H}^{\trp}\tens{S}_k^{-1}\\
\bm{m}_k &= \hat{\bm{m}}_k + \tens{K}_k\left(\bm{y}_k - \tens{H}_k \hat{\bm{m}}_k\right)\\
\tens{P}_k &= \hat{\tens{P}}_k - \tens{K}_k \tens{S}_k \tens{K}_k^{\trp}
\end{align*}
\end{frame}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment