
TSM AnTeDe
Understanding Syntax

Daniele Puccinelli

University of Applied Sciences and Arts of Southern Switzerland (SUPSI)

Daniele Puccinelli 1 / 40



Syntactic Parsing

Syntactic Parsing = mapping the syntactic structure of sentences

Why?
Grammar checking: if you can’t parse a sentence, there must be
something wrong with it
Intermediate stage of representation for semantic analysis

information extraction
question answering

Formal grammar: set of rules used to build syntactically valid sentences
Nearly all natural languages seem to follow the Context-Free Grammar
model
Swiss-German is a notable exception: it needs a mildly
context-sensitive grammar1

1S. Shieber, Evidence Against the Context-Freeness of Natural Language, Linguistics
and Philosophy, Vol. 8, 1985

Daniele Puccinelli 2 / 40



What is a Context-Free Grammar (CFG)?

A CFG includes:
a set of terminals T : words you see on the page
a set of non-terminals N: labels we give to the words and groups of
words
a designated start symbol S ∈ N

a set of rules (also called productions) of the form A→ β

A is a non-terminal (LHS = Left-Hand Side)
β is a sequence of terminals and non-terminals (RHS = Right-Hand
Side)
A→ β means replace A with β

Why do we say context-free?
Rules can be applied regardless of context
When you apply a rule to a symbol, nothing matters other than the
symbol you apply the rule to

Daniele Puccinelli 3 / 40



Simple CFG example

T : {dogs, play, cuddly, wag}
N: {Sentence, Noun, Verb, Adjective, NounPhrase, VerbPhrase}
S=Sentence
the rules are:

Sentence → NounPhrase
Sentence → NounPhrase VerbPhrase
NounPhrase → Noun
NounPhrase → Adjective Noun
VerbPhrase → Verb
Noun → dogs
Adjective → cuddly
Verb → {play, wag}

To create a legal string:
Begin the string with the start symbol Sentence
Apply a production rule
Repeat until you have a string of terminals

Daniele Puccinelli 4 / 40



Simple CFG example

Sentence → NounPhrase
NounPhrase → Adjective Noun
Adjective → cuddly
Noun → dogs
Our string is cuddly dogs

Sentence → NounPhrase Verb Phrase
NounPhrase → Noun
VerbPhrase → Verb
Noun → dogs
Verb → wag
Our string is dogs wag

Daniele Puccinelli 5 / 40



Key Jargon from Linguistics

Smaller units combine into increasingly complex ones
phrase: a group of words standing together as a conceptual unit

Noun Phrase: a phrase built around a noun (e.g.: the dog, the smart
dog, the very clever dog)
Verb Phrase: a phrase built around a verb (e.g.: went home, is on the
couch, are nice)
Prepositional Phrase: a phrase including a preposition and a noun
phrase that indicates relations in space and time (e.g., at home, after
dinner)
Adjective/Adverb Phrase: a phrase built around adjectives and adverbs
(e.g., very politically correct, which is an adjective phrase including the
adverb phrase very politically that qualifies the adjective correct)

Daniele Puccinelli 6 / 40



Key Jargon from Linguistics

clause: includes at least a subject and a verb (e.g.: I’m going home;
e.g.: because I’m tired)
sentence: a group of clauses

simple sentence: only an independent clause (e.g.: I’m coming home)
compound sentence: at least two independent clauses (e.g.: I’m
coming home but I’m not watching your show)
complex sentence: one independent clause and one or more dependent
clauses (e.g.: I’m coming home because I’m tired)
compound-complex sentence: two or more independent clauses and one
or more dependent clauses (e.g.: I’m coming home but I’m not
watching your show because I’m tired).

Daniele Puccinelli 7 / 40



From CFG to constituency structure

A CFG represents how words and phrases are organized in a sentence

If a sentence is part of the language defined by a CFG, we know how its
constituents (its parts) are organized

In practice, we need a probabilistic CFG (PCFG)
The same as a CFG but every rule has a certain probability
All probabilities for the same LHS must sum to 1
We can learn these probabilities from treebanks!

Daniele Puccinelli 8 / 40



Constituency structure

We can combine words into phrases based on CFG rules
Say we want to build a Noun Phrase (NP)
We may apply a rule NP → DT NN to build a NP, like the dog
We may apply NP → DT (JJ1) NN and enrich our Noun Phrase with
an (optional) adjective: the {big | lovely | cuddly} dog
We may build a prepositional phrase by applying PP → IN2 NP: on
the table | by the door | in my arms
Now we build a more complex NP with the rule NP → DT (JJ) NN
(PP): e.g., the cuddly dog in my arms
We can go on with other rules and combine phrases into sentences

What we do in practice is the opposite: we see how words are organized
based on CFG rules

1JJ = adjective in the Penn tagset
2IN = preposition in the Penn tagset

Daniele Puccinelli 9 / 40



Constituency

Example: F̀e´dffl ˚r`a˚i¯sfi`eṡ ˚i‹n˚t´eˇr`eṡfi˚t ˚r`a˚t´eṡ.

With PoS tagging, we identify the individual parts of speech

Daniele Puccinelli 10 / 40



Constituency

Example: F̀e´dffl ˚r`a˚i¯sfi`eṡ ˚i‹n˚t´eˇr`eṡfi˚t ˚r`a˚t´eṡ.

We can go up one layer and identify noun phrases (NP), verb phrases
(VP), and the whole sentence (S)

S

VP

NP

NNS

rates

NN

interest

VBP

raises

NP

NNP

Fed

Daniele Puccinelli 11 / 40



Constituency

S

VP

NP

NNS

rates

NN

interest

VBP

raises

NP

NNP

Fed

interest and rates go together
as a noun phrase

raises and interest rates go
together as a verb phrase

Fed and raises interest rates go
together as a sentence

Each NP and VP unit is a
constituent (a part of the
sentence)

Constituents can be indicated
with brackets: Fed [raises
[interest rates]]

Daniele Puccinelli 12 / 40



Don’t take my word for any of this

Try everything yourself in Notebook A as I walk you through the lecture

You’re less likely to fall asleep
You’ll probably have more fun

Daniele Puccinelli 13 / 40



Constituency

How do we know what a constituent is?
it’s a complex question and linguists often disagree, but there are
some basic tests
look for words that stay together when phrases move around

Mary talked to her daughters about Cinderella → OK
Mary talked about Cinderella to her daughters → OK
To her daughters, Mary talked about Cinderella → OK
* Mary talked Cinderella to her daughters about → NO!

phrasal expansion and substitution
I sat [on the box]
I sat [on the box | right on top of the box | on top of it | there]

Lots of other tests

Daniele Puccinelli 14 / 40



Constituency example

Try it yourself using Stanford CoreNLP’s parser in Lab A!

Daniele Puccinelli 15 / 40



Constituency example

The president is a NP1

her sandwich is a NP
at her desk is a PP2

eats her sandwich at her desk is a VP3 → VBZ NP PP
You get the whole sentence with the rule S4 → NP VP

1noun phrase
2prepositional phrase
3verb phrase
4sentence

Daniele Puccinelli 16 / 40



Clause-level constituents

S - simple declarative clause (e.g., I’m taking this class)
SBAR - clause introduced by a (possibly empty) subordinating
conjunction (e.g. I think I’m stupid; I think that I’m stupid)
SBARQ - direct questions introduced by a wh-word or a wh-phrase
(e.g. What do you mean?)
SINV - Inverted declarative sentence (e.g., Never has so much been
owed . . . )
SQ - Yes/No questions (e.g. Do you live here?)

Daniele Puccinelli 17 / 40



This was constituency parsing

Check out the AllenNLP demos based on ELMo (Embeddings from
Language Models)1

Try this yourself at
https://demo.allennlp.org/constituency-parsing

1M. Peters et al., Deep contextualized word representations, NAACL 2018
Daniele Puccinelli 18 / 40

https://demo.allennlp.org/constituency-parsing


The alternative is dependency parsing

Basic idea: every word is another word’s dependent, except for the root

The root corresponds to the central idea of the sentence

Daniele Puccinelli 19 / 40



Dependency structure

Example: T‚h`e ¯p˚r`eṡfi˚i`d`e›n˚t `e´a˚tṡ ˛h`eˇrffl ¯sfi`a‹n`d‹w˘i`c‚hffl `a˚t ˛h`eˇrffl `d`eṡfi˛kffl.

The central idea is eating
eat has three arguments:

1 The president, who performs the action of eating (who?) → nsubj
president gets modified by the (article/determiner)

2 sandwich, the thing that gets eaten (what?) → dobj1

sandwich gets modified by her (whose?) → nmod2

3 desk, the location where the action of eating takes place (where?)→
nmod

at complements desk → case3

her modifies desk → nmod4

1direct object
2nominal modifier
3case marking; in English it’s used for any preposition
4nominal modifier

Daniele Puccinelli 20 / 40



Dependency parsing

T‚h`e ¯p˚r`eṡfi˚i`d`e›n˚t `e´a˚tṡ ˛h`eˇrffl ¯sfi`a‹n`d‹w˘i`c‚hffl `a˚t ˛h`eˇrffl `d`eṡfi˛kffl.

Daniele Puccinelli 21 / 40



Dependency - example 2

I ¯sfi`e´e `affl ”vfleˇr‹y ˜b˘i`g `d`oˆg `o“nffl ˚t´op̧ffl `o˝f ˚t‚h`e ¯p˚i˜l´e `o˝f `c¨l´o˘t‚h`eṡ ˚t‚h`a˚t ”y´o˘uffl ˜l´e¨fˇt
”n`e›xˇt ˚t´o ˚t‚h`e ”wˆa¯sfi˛h˚i‹n`g ”m`a`c‚h˚i‹n`e.

The central idea is seeing
see has two arguments:

1 I, the person who’s seeing → nsubj
2 dog, which is what I’m seeing (what?) → dobj

If we stop here, we get I see dog., which is ungrammatical but conveys
the gist of the sentence

dog is complemented/modified by:
1 a, which serves as a determiner of dog → det
2 big, which serves as an adjectival modifier of dog → amod

very acts as an adverbial modifier of big → advmod
3 top, which is where the dog is (where?) and acts as a nominal modifier
→ nmod

So far, we have I see a big dog top.
Not the Queen’s English, but you get the idea.

Daniele Puccinelli 22 / 40



Dependency parsing - example 2

Daniele Puccinelli 23 / 40



Dependency - example 2

I ¯sfi`e´e `affl ”vfleˇr‹y ˜b˘i`g `d`oˆg `o“nffl ˚t´op̧ffl `o˝f ˚t‚h`e ¯p˚i˜l´e `o˝f `c¨l´o˘t‚h`eṡ ˚t‚h`a˚t ”y´o˘uffl ˜l´e¨fˇt
”n`e›xˇt ˚t´o ˚t‚h`e ”wˆa¯sfi˛h˚i‹n`g ”m`a`c‚h˚i‹n`e.

top is complemented/modified by:
1 on, which complements top as a case marking → case
2 pile, which serves as a noun modifier of top → nmod

So far, I see a very big dog on top pile.

pile is complemented/modified by:
1 of from on top of the, which complements pile as a case marking →

case
2 the from on top of the, which complements pile as a determiner → det
3 clothes, which serves as a noun modifier of pile → nmod

clothes is complemented by of (from of clothes) as a case marking →
case

4 left, which serves as a relative clause modifier of pile → acl:recl
You left the clothes, not the pile, so this is technically incorrect!!!
So far, I see a very big dog on top of the pile clothes left.

Daniele Puccinelli 24 / 40



Dependency - example 2

I ¯sfi`e´e `affl ”vfleˇr‹y ˜b˘i`g `d`oˆg `o“nffl ˚t´op̧ffl `o˝f ˚t‚h`e ¯p˚i˜l´e `o˝f `c¨l´o˘t‚h`eṡ ˚t‚h`a˚t ”y´o˘uffl ˜l´e¨fˇt
”n`e›xˇt ˚t´o ˚t‚h`e ”wˆa¯sfi˛h˚i‹n`g ”m`a`c‚h˚i‹n`e.

left has three arguments:
1 that, which acts as a relative pronoun standing for the clothes (or the

pile, according to our parse), which is the direct object you left → dobj
2 you, who left them → nsubj
3 next, which is where you left them → advmod

So far, I see a very big dog on top of the pile of clothes that you left
next.

machine is complemented/modified by:
1 to, which complements machine as a case marking → case
2 the, which complements machine as a determiner → det
3 washing, which acts as an adjective modifier → amod

We’re done: I see a very big dog on top of the pile of clothes that you
left next to the washing machine.

Daniele Puccinelli 25 / 40



Attachment ambiguities

Example: I ¯sfi`a‹w ˚t‚h`e ”m`a‹nffl ”w˘i˚t‚hffl `affl ˚t´e¨l´eṡfi`c´op̧`e.

saw is the root
I and man depend on the root
If I used a telescope to see the man, then telescope also depends on
the root
If the man was holding a telescope, then telescope depends on man

What does CoreNLP think?
Daniele Puccinelli 26 / 40



Attachment ambiguities

Daniele Puccinelli 27 / 40



Key Algorithms

We will look into the details of some key algorithms:

Constituency Parsing: how are the sentence elements organized?
Probabilistic Cocke-Kasami-Younger (CKY) parser

Dependency Parsing: what depends on what?
Arc-standard transition-based parser
Neural dependency parser

Daniele Puccinelli 28 / 40



Arc-standard transition-based parser

At any given time, the parser has a configuration:
A stack of words (top to the right)
A buffer of words (top to the left)
A (partial) dependency graph

The parser begins in an initial configuration
stack: ROOT symbol
buffer: all words
dependency graph: empty

The possible actions are:
1 SHIFT: move a word from the top of the buffer to the top of the stack
2 LAr : Left Arc

the neighbor of the head of the stack is a dependent of the head of the
stack
add a corresponding link to the dependency graph with label r
remove the neighbor from the stack

3 RAr : Right Arc
the head of the stack is a dependent of its neighbor
add a corresponding link to the dependency graph with label r
remove the head of the stack

Daniele Puccinelli 29 / 40



Arc-standard transition-based parser

Example1: parse the sentence I ate fish
Initial configuration: the stack contains the root symbol, the buffer
contains the sentence

The first step is a SHIFT because I is not the root
The second step is also a SHIFT because ate doesn’t depend on I

I depends on the root ate (nsubj), so the third step will be a . . .
1From Christopher Manning, CS224N/Ling284 2017, Stanford University

Daniele Puccinelli 30 / 40



Arc-standard transition-based parser

I depends on the root ate (nsubj), so the third step will be a LAnsubj

We make a LAnsubj : Left Arc
the neighbor of the head of the stack is a dependent of the head of
the stack
add a corresponding link to the dependency graph with label nsubj
remove the neighbor from the stack

Now we must SHIFT fish to the stack so we can empty the buffer

Daniele Puccinelli 31 / 40



Arc-standard transition-based parser

Now the head of the stack, fish, depends on ate (dobj)

We make a RAdobj : Right Arc
the head of the stack is a dependent of its neighbor
add a corresponding link to the dependency graph with label r
remove the head of the stack

Daniele Puccinelli 32 / 40



Arc-standard transition-based parser

Like before, the head of the stack, ate, depends on root, because it is
indeed the root of the tree

We make another RAroot : Right Arc
the head of the stack is a dependent of its neighbor
add a corresponding link to the dependency graph with label r
remove the head of the stack

And we’re done: the buffer is empty and the graph is full!

Daniele Puccinelli 33 / 40



Arc-standard transition-based parser

This is what our dependency graph looks like:

This is great, but don’t you think we left something out?

Daniele Puccinelli 34 / 40



How do you know what to do?

How do we decide which action to take at each step?
Use a discriminative classifier (SVM, perceptron, maxent) over all
legal moves

3 untyped choices
2 |R| +1 if we have |R| possible dependency labels (|R| ≈ 40)

Features: word at the top of the stack word and its PoS; word at the
top of the buffer and its PoS

Common approach in the 2000s
Sparse feature vectors (up to 107 dimensions!)
Incomplete, because you can’t account for everything (language is very
complex!)
Feature computation was extremely time-consuming

Training: use treebanks!
Fast greedy approach: pick the best option at each step
This is the basic idea in MaltParser1

1J. Nivre and J. Hall, MaltParser: A Language-Independent System for Data-Driven
Dependency Parsing. Fourth Workshop on Treebanks and Linguistic Theories, 2005

Daniele Puccinelli 35 / 40



Another Example

This example was featured in a seminal research paper2

Transition-based dependency parsing is essentially about classifying each
transition correctly as a SHIFT, LAr , or RAr .

2D. Chen and C. Manning, A Fast and Accurate Dependency Parser using Neural
Networks, EMNLP ’14

Daniele Puccinelli 36 / 40



Neural Dependency Parser

Represent words as d−dimensional word embeddings with d ≈ 1000
Also represent PoS tags and the already known dependency labels as
d−dimensional vectors

NNS (plural noun) should be close to NN (singular noun)
amod (adjective modifier) should be close to advmod (adverbial
modifier)

Extract a set of tokens based on stack/buffer positions
For example, head of stack, its neighbor, head of buffer, its neighbor

Look up their embedding vectors and concatenate them with the PoS
and label embedding vectors

Daniele Puccinelli 37 / 40



Neural Dependency Parser

Input layer: concatenated embedding vectors
Feedforward neural network with ReLu non-linearity
Softmax gives a probability distribution
Use cross-entropy loss to measure the error

Google’s Syntaxnet essentially uses these same principles

Daniele Puccinelli 38 / 40



Dependency parser performance

Source: Christopher Manning

Daniele Puccinelli 39 / 40



Lab B

Research assignment:
Can you modify the parameter n_classes? Why or why not? What
does it represent?
Modify some of the parameters of the model (e.g., hidden_size) and
see how the performance changes. Explain, in broad terms, the effect
of your changes.
Optional: perform an ablation study where you remove certain
features of the model (for example, dropout) and see how the
performance changes.

Please answer (some of) these questions in a one-page written report.

Daniele Puccinelli 40 / 40


