Alain Keller
Tobias Rothlin

AnTeDe Lab 8

1 Notebook B

The goal of a dependency parser is to find out the relations between different words and what type of
relationships they have to each other. This is done by analysing the grammatical structure of the sentence.

To build the dependency between the words in the sentence an algorithm named Transition-based depen-
dency parsing is used. It uses a Stack, Buffer and A (a set of arcs). The Stack contains which words the
algorithm is currently looking at. The Buffer contains all other words from the sentence and A contains
the arcs that the algorithm already classified. An Arc describes how words relate to each other starting
from the root word.

1.1 Is n_classes a modifiable hyper parameter?

The neural network in the dependency parser has the job of deciding which of the three possible actions
should be taken at each step of the algorithm.

1. Shift: Moves words sequentially into the stack

2. Left Arc: The word to the left of the Head (right most word in the stack) is a dependent of the
Head.

3. Right Arc: The Head is a dependent of the word to its left (just the different direction as the Left
Arc)

The n_classes parameter in the Neural Network corresponds to the three actions that can be taken at each
step in the algorithm. Thus this parameter can not be changed since there are only thee possible actions
to be taken. From this follows that n_classed is not an hyper parameter that can/ should be tuned.

1.2 Hyper parameter tuning

In this section the effect of hyper parameter tuning on the model performance is analysed. The effect on
the model performance of two hyper parameters will be evaluated. To start with the baseline performance
will be evaluated.



1.2.1 Evaluation

All models will be compared by using the UAS (Unlabeled Attachment Score)

H ref hidden_size dropout_prob ‘ UAS H

baseline 200 0.5 89.27
1 300 0.5 89.50
2 100 0.5 87.68
3 200 0.8 86.65
4 200 0.2 89.42

All models were trained for 10 Epochs and the final test UAS is noted in table. Looking at the above
results it seems that a hidden_size between 200 and 300 is a very reasonable size. This makes sense since
the model needs some capacity to accurately predict the next action. The best dropout_prob seems to be
somewhere between 0.2 and 0.5. This is could be due to the fact that the model converges faster with a
lower dropout_prob.



