

Spring 2020

An Introduction to
Reinforcement Learning

 Author
Kurath Samuel

 May 4, 2020

Contents

1 Reinforcement Learning 2
1.1 Terminology . 3
1.2 Approaches . 8
1.3 Q-Learning . 10
1.4 Deep Q-Learning . 14

Glossary 19

Bibliography 20

1

1 Reinforcement Learning

Reinforcement learning is a computational approach to learn how to act under certain
circumstances. The goal is to optimize the behavior of an agent by getting only the state
and a reward from the environment. Hence, the main components of reinforcement
learning are the environment and the agent. The environment represents the state, the
possible transitions and should provide some kind of a reward. The agent is the learning
part of the system and decides which action to take in relation to the state of the
environment. In response to the action the agent gets a reward from the environment.
This process is illustrated in figure 1.1.

Figure 1.1: Reinforcement Learning

Furthermore, reinforcement learning contains a policy, a reward, a value function and
optionally a model of the environment.

The policy, π, defines the behavior of the agent at a certain moment depending on the
current state and all the possible actions. It could be seen as a mapping from a state to
an action.

The reward describes the goal of the problem. It is a numeric value often provided by
the environment and it is given immediately after every action. Based on the reward,
we update and improve the policy.

The value function, υ, determines how good it is to be in a particular state. In contrast
to the reward, the value function doesn’t only depend on the current action. It does a
rating based on experience and tries to include the estimated following reward.

The model is not an absolute necessary part of a reinforcement learning system but
often it is very essential to taking good decisions. The aim of a model is to simulate
the behavior of the environment. This simulation supports the planning mechanism by
getting information about possible future situations that have not yet happened.

2

1 Reinforcement Learning

1.1 Terminology

The current section gives an overview of common concepts of reinforcement learning.
For more information I recommend Richard Sutton’s and Andrew Barto’s excellent book
[SB98] or the reinforcement learning course by David Silver [Sil18].

1.1.1 Markov Decision Process

A markov decision process is a method to formally describe an environment for reinforce-
ment learning. It is a stochastic process that specifies transition probabilities from state
to state. The objective of a markov decision process is to find a strategy to maximize the
sum of future rewards. Further, the environment of a markov decision process is fully
observable and it fulfills the markov property. The following list formalizes a markov
decision process:

• S a finite set of all states

• A a finite set of all actions, the transitions between the states

• R reward associated with each transition

• γ ∈ [0, 1] discount factor, quantifies the difference in importance between immedi-
ate rewards and future rewards

Markov Property The markov property means that the underlying process is memo-
ryless [DD53]. This implies that the current state contains all the information about
the history. Or in other words, all the future states and actions are independent on the
past.

Example

Markov decision processes can be illustrated similarly to markov chains, also known as
markov processes. But markov decision processes extend the markov chain with actions
and rewards. An example is illustrated in figure 1.2. It shows a possible drive along
a downhill track with different actions to take. Depending on those actions there are
different probabilities to reach the goal or unfortunately go to the hospital.

3

1 Reinforcement Learning

Figure 1.2: a markov decision process at the example of a downhill ride

In figure 1.2 the actions are illustrated as the blue circles, the states are represented by
the yellow circles, the probabilities are written in black and the rewards are written in
red.

1.1.2 Episode

If we have a look at an arbitrary problem and formalize the process as a markov decision
process we get a repeated sequence of states, actions and rewards until a terminal state
is reached, this is called an episode. An example is listed in (1.1).

S0, A0, R0, S1, A1, R1, S2, A2, R2, ..., Sn (1.1)

where:

n: terminal state

Example In terms of our downhill example a possible episode is listed in (1.2).

SStart, Adrive_risky, R1, SHospital , Ahave_surgery, R4, SGoal (1.2)

1.1.3 Reward

As already mentioned, the goal of an agent is to maximize the cumulative received reward
during an episode. This is based on the idea of the reward hypothesis [Sut18]:

That all of what we mean by goals and purposes can be well thought of
as maximization of the expected value of the cumulative sum of a received
scalar signal (reward).

4

1 Reinforcement Learning

The total reward of an episode can be obtained by applying the equation listed in (1.3).

Rtotal =
n

∑
t=0

Rt (1.3)

Example If we take the episode from our example in (1.2), we get get the result that
you see in (1.4).

Rtotal = R1 + R4 = −3 + 1 = −2 (1.4)

Discounted reward

In reinforcement learning there often is a discount factor γ used to estimate the future
reward. Reasons to use a discount factor are uncertainties about the future, avoiding
infinity cycles in a markov process and there is a psychological effect as well. Humans
tend to favor immediate reward over future one. The calculation of the discounted
reward of an episode is illustrated in (1.5).

Rdiscounted =
n

∑
t=0

γtRt (1.5)

Example Now imagine you are at the beginning of the downhill track and you think
that your ride will end like the episode of example (1.2). Since you are not absolutely
sure, you consider a discount factor γ in your calculation and set it to 0.9, resulting in
(1.6).

Rdiscounted = γ0R1 + γ1R4 = 0.90 · (−3) + 0.91 · 1 = −2.1 (1.6)

1.1.4 Value Functions

Reinforcement learning algorithms involve estimating value functions. Value functions
are always dependent on a certain policy, π. There are two different functions we have
to look at:

• state-value-function

• action-value-function

5

1 Reinforcement Learning

State-Value-Function

The state-value-function defines the expected value of the state S by following the policy
π and estimates how good it is to be in a certain state.

Vπ(s) = Eπ

[∞

∑
k=0

γkRt+k+1 | St = s
]

(1.7)

where:

Eπ: is the expected value by following policy π

St: determines the state at a certain timestamp

Example Let us reconsider the downhill example from figure 1.2 and define a simple
policy, π, as follows.

Since we aren’t professional cyclists, we always decide to drive safely and if we have
an accident on the track and land in the hospital we have a surgery to get back on the
track as fast as possible in order to reach the goal. This results in the policy listed in
(1.8).

π :

{
SStart → Adrive_sa f ely

SHospital → Ahave_surgery
(1.8)

Now we are able to apply the policy of our example and compute the state-value-function
for the states. The calculation is illustrated at (1.9) and we set the discount factor γ to
0.9.

Eπ(SStart) = 0.1 · (−3) + 0.9 · 3 = 2.4
Eπ(SHospital) = 1.0 · 1.0 = 1.0

Eπ(SGoal) = 0 , the value of a terminal state is always zero
Vπ(SStart) = γ0 · Eπ(SStart) + γ1 · Eπ(SHospital) + γ2 · Eπ(SGoal)

= 0.90 · 2.4 + 0.91 · 1.0 + 0.92 · 0 = 3.3

Vπ(SHospital) = γ0 · Eπ(SHospital)γ
1 · Eπ(SGoal)

= 0.90 · 1 + 0.91 · 0 = 1.0

(1.9)

Action-Value-Function

The action-value-function expresses the expected value after taking an action a from
state s and estimating how good it is to perform a certain action at a given state.

Qπ(s, a) = Eπ

[∞

∑
k=0

γkRt+k+1 | St = s, At = a
]

, for all s ∈ S (1.10)

where:

6

1 Reinforcement Learning

Eπ: is the expected value by following policy π

St: determines the state at a certain timestamp

Example For the action-value-function we change our policy, π, to a more risky one.

This leads us to the policy listed in (1.11).

π :

{
SStart → Adrive_risky

SHospital → Ahave_surgery
(1.11)

Now the action-value-function is able to answer the question of, ”How good is it if you
take the risky driving strategy in policy π?”

Eπ(SStart, Adrive_risky) = 0.9 · (−3) + 0.1 · 10 = −1.7

Eπ(SHospital , Ahave_surgery) = 1.0 · 1.0 = 1.0

Eπ(SGoal) = 0 , the value of a terminal state is always zero
Qπ(SStart, Adrive_risky) = γ0 · Eπ(SStart, Adrive_risky) + γ1 · Eπ(SHospital , Ahave_surgery) + γ2 · Eπ(SGoal)

= 0.90 · −1.7 + 0.91 · 1.0 + 0.92 · 0 = −0.8
(1.12)

7

1 Reinforcement Learning

1.2 Approaches

The following section lists different approaches to handling reinforcement learning prob-
lems.

1.2.1 Dynamic Programming

Dynamic programming was first introduced by Richard Bellman [Bel54]. The main idea
is to simplify a complicated problem, break it into smaller subproblems and repeat that
process recursively. Examples of this are the Viterbi Algorithm [For73] or Dijkstra’s
Algorithm [Dij59] for the shortest path problem. If the state-transition probabilities
and the reward function are given, these algorithms are able to compute an optimal
policy under the assumption that the model is provided perfectly. In the worst case
it takes polynomial time in the number of states and actions to find an optimality. In
reinforcement learning, we are unfortunately often faced with problems without a perfect
model and without the computational power to apply such techniques.

In terms of reinforcement learning and dynamic programming the subproblems are de-
fined as:

• Policy evaluation is a description of the process used to compute the state-value-
function for an arbitrary policy. It helps us to quantify how powerful a policy
is.

• Policy improvement is the next step after evaluating a policy with the goal to
make the policy better. For that purpose, we could use the action-value-function
to take an other action at a certain state and determine if the new policy is an
improvement.

• Policy iteration combines policy evaluation with policy improvement. It also iter-
ates over these processes to find an optimal policy. A downside of policy iteration
could be that you have to evaluate a policy at every step.

• Value iteration effectively combines, in each of its steps, one step of policy evalua-
tion and one step of policy improvement.

1.2.2 Monte Carlo methods

In general a Monte Carlo method [MU49] describes any method that solves a problem
by generating suitable random numbers and observes some properties based on them.
If we apply Monte Carlo methods to reinforcement learning, the agent learns directly
from experience on complete episodes. It is a model-free approach. That means that
the value-function is unknown.

For instance, we could consider or downhill ride problem from figure 1.2 and remove
the state-transition probabilities. Now we aren’t able to determine the value-function.
However, we could follow an arbitrary policy and observe the states we reach dependent
on our chosen actions. If we repeat this process for enough time, we can estimate the

8

1 Reinforcement Learning

value-function by the gained experience. And in accordance to the law of large numbers
it is even possible to find an optimal policy.

1.2.3 Temporal Difference Learning

Temporal difference learning is an enhancement of reinforcement learning that combines
the Monte Carlo method and dynamic programming. Similar to Monte Carlo methods
it learns by experience without a model of the problem and like dynamic programming
it doesn’t only adjust if the whole episode is finished. Hence, it is able to update
the estimated value-function after every action it takes. Known temporal difference
algorithms are Sarsa and Q-learning.

9

1 Reinforcement Learning

1.3 Q-Learning

Q-Learning is located in the area of model free reinforcement learning techniques [Wat89].
The goal is to learn the action-value-function Q that represents the optimal policy. The
computation of Q as introduced by Watkins is listed in (1.13). If Q is known, you only
have to select the action that gives the biggest reward for acting in an optimal manner.

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (1.13)

where:

Q: action-value-function
S: state
A: action
t: step
α: (0, 1]
R: reward
γ: discount factor
a: all possible next states

1.3.1 Example

To get more familiar with Q-learning we apply the theory at an example. The example
is based on the Grid World game, which aims to get as fast as possible to a certain field
from a random starting position. It is illustrated in figure 1.3, and our particular version
uses the following constraints:

• 3 x 3 world size

• (0, 0) is the goal field

• allowed actions are left, right, up and down

• illegal actions are diagonal movements and leaving the grid

Figure 1.3: Grid World

10

1 Reinforcement Learning

Implementation

To illustrate how the Q-learning algorithm works, we will use an implementation in
Python applied to the example of the Grid World game.

1. First, we define all the legal and illegal actions as you can see in listing 1.1.

� �
1 def right(x, y):
2 return x + 1 if x < 2 else x, y
3
4
5 def left(x, y):
6 return x - 1 if x > 0 else x, y
7
8
9 def up(x, y):

10 return x, y - 1 if y > 0 else y
11
12
13 def down(x, y):
14 return x, y + 1 if y < 2 else y
15
16
17 actions = [left, right, up, down]
18
19 illegal_actions = [(0, 0, left), (0, 0, up), (1, 0, up), (2, 0, up),
20 (2, 0, right), (0, 1, left), (0, 2, left), (0, 2, down),
21 (1, 2, down), (2, 2, down), (2, 2, right), (2, 1, right)]� �

Listing 1.1: action definition

2. Second, we define the reward in relation to the state and the action. This is
illustrated in 1.2. The goal state gets 100, illegal actions get -1 and the remaining
are initialized with zeros.

� �
1 reward = {(0, 0, left): 100, (0, 0, right): 0, (0, 0, up): 100, (0, 0, down): 0,
2 (0, 1, left): -1, (0, 1, right): 0, (0, 1, up): 100, (0, 1, down): 0,
3 (0, 2, left): -1, (0, 2, right): 0, (0, 2, up): 0, (0, 2, down): -1,
4 (1, 0, left): 100, (1, 0, right): 0, (1, 0, up): -1, (1, 0, down): 0,
5 (1, 1, left): 0, (1, 1, right): 0, (1, 1, up): 0, (1, 1, down): 0,
6 (1, 2, left): 0, (1, 2, right): 0, (1, 2, up): 0, (1, 2, down): -1,
7 (2, 0, left): 0, (2, 0, right): -1, (2, 0, up): -1, (2, 0, down): 0,
8 (2, 1, left): 0, (2, 1, right): -1, (2, 1, up): 0, (2, 1, down): 0,
9 (2, 2, left): 0, (2, 2, right): -1, (2, 2, up): 0, (2, 2, down): -1, }� �

Listing 1.2: reward definition

3. As you can see in listing 1.3, the agent initializes the Q values with zeros. It hosts
a greedy strategy for the action choice and provides the train method.� �

1 class Agent:
2 def __init__(self, gamma=0.95, exploration_rate=0.9):
3 self.gamma = gamma
4 self.exploration_rate = exploration_rate
5 self.Q = {(0, 0, left): 0, (0, 0, right): 0, (0, 0, up): 0, (0, 0, down): 0,
6 (0, 1, left): 0, (0, 1, right): 0, (0, 1, up): 0, (0, 1, down): 0,
7 (0, 2, left): 0, (0, 2, right): 0, (0, 2, up): 0, (0, 2, down): 0,

11

1 Reinforcement Learning

8 (1, 0, left): 0, (1, 0, right): 0, (1, 0, up): 0, (1, 0, down): 0,
9 (1, 1, left): 0, (1, 1, right): 0, (1, 1, up): 0, (1, 1, down): 0,

10 (1, 2, left): 0, (1, 2, right): 0, (1, 2, up): 0, (1, 2, down): 0,
11 (2, 0, left): 0, (2, 0, right): 0, (2, 0, up): 0, (2, 0, down): 0,
12 (2, 1, left): 0, (2, 1, right): 0, (2, 1, up): 0, (2, 1, down): 0,
13 (2, 2, left): 0, (2, 2, right): 0, (2, 2, up): 0, (2, 2, down): 0, }
14
15 def max_next_q_value(self, x, y):
16 next_states = [action(x, y) for action in actions]
17 all_qs = []
18 for action in actions:
19 all_qs += [self.Q[(state[0], state[1], action)] for state in next_states]
20 return max(all_qs)
21
22 def choose_greedy_action(self, x, y):
23 q_values_actions = [(self.Q[x, y, action], action) for action in actions
24 if (x, y, action) not in illegal_actions]
25 return choice([action for q_value, action in q_values_actions
26 if max(q_values_actions, key=lambda z: z[0])[0] == q_value])
27
28 def train(self, episodes):
29 for _ in range(episodes):
30 x, y = randint(0, 2), randint(0, 2)
31 while not (x == 0 and y == 0):
32 action = choice(actions) if uniform(0, 1) >= self.exploration_rate \
33 else self.choose_greedy_action(x, y)
34 next_x, next_y = action(x, y)
35 self.Q[(x, y, action)] = reward[x, y, action] + \
36 self.gamma * self.max_next_q_value(next_x, next_y)
37 x, y = next_x, next_y
38
39 def run(self, x, y):
40 action_counter = 0
41 while not (x == 0 and y == 0):
42 action = self.choose_greedy_action(x, y)
43 x, y = action(x, y)
44 action_counter += 1
45 return action_counter� �

Listing 1.3: the agent

The agent is the core component of the algorithm and uses the train method to optimize
the action-value-function, Q. The update of the action-value-function uses the equation
listed in (1.13) with α = 1 (listing 1.3, line 36). It is important to mention that the
choice of the next action is implemented in a greedy way (listing 1.3, line 22). Further,
there is an exploration mechanism added (listing 1.3, line 33) to make sure that all the
fields are visited and you doesn’t end in a local minima.

3. Finally, we are able to train and run the agent to verify our result. See 1.4.

� �
1 agent = Agent()
2 agent.train(episodes=1000)
3
4 for start_x, start_y in [(2, 2), (2, 1), (1, 1)]:
5 print('Start:({},{}) It took {} actions to the goal.'
6 .format(start_x, start_y, agent.run(start_x, start_y)))
7
8 '''output
9 Start:(2,2) It took 4 actions to the goal.

10 Start:(2,1) It took 3 actions to the goal.
11 Start:(1,1) It took 2 actions to the goal.
12 '''

12

1 Reinforcement Learning

� �
Listing 1.4: train and run the agent

Result

As you can see from the output in listing 1.4, the agent took a shortest path to the goal
field by using the trained action-value-function and a greedy choice of the next action.
The visualization of the Q values is illustrated in 1.1. If you start at any field in the grid
and choose the highest action-value, you will find a shortest path through the world.

(0,0)

←: 0.0
→: 0.0
↑: 0.0
↓: 0.0

(1,0)

←: 2000.0
→: 1900.0
↑: 1899.0
↓: 1900.0

(2,0)

←: 1900.0
→: 1899.0
↑: 1899.0
↓: 1805.0

(0,1)

←: 1899.0
→: 1900.0
↑: 2000.0
↓: 1900.0

(1,1)

←: 1900.0
→: 1805.0
↑: 1900.0
↓: 1805.0

(2,1)

←: 1900.0
→: 1804.0
↑: 1900.0
↓: 1805.0

(0,2)

←: 1899.0
→: 1805.0
↑: 1900.0
↓: 1899.0

(1,2)

←: 1900.0
→: 1805.0
↑: 1900.0
↓: 1804.0

(2,2)

←: 1805.0
→: 1804.0
↑: 1805.0
↓: 1804.0

Table 1.1: values of the action-value-function, Q

13

1 Reinforcement Learning

1.4 Deep Q-Learning

Most of the problems aren’t as small as our Grid World game from 1.3.1 and it is
often impossible to compute or traverse the whole state space in an affordable amount
of time. Hence, we need techniques that are good in generalization and are able to
handle problems in a variety of forms. And this is exactly where deep learning meets
reinforcement learning. Deep learning does a great job in generalization and in handling
unknown situations. In particular, the neural networks represent and learn to depict
the action-value-function. This enabled great successes in games like Go by DeepMind
[Mni+15].

1.4.1 Functionality

Deep Q-Learning roughly works as follows:

1. First it randomly initializes our neural network, which represents our action-value-
function.

2. Then we can simulate some games and memorize them.

3. After that, we are able to train the neural network based on the memorized games.
This process is called experience replay.

4. Finally, we repeat this process until we are pleased with the behavior of the neural
network or a certain number of episodes has been completed.

The full algorithm introduced by V. Mnih et al. [Mni+15] is listed in 1.

Algorithm 1 Deep Q Learning with experience replay
Initialize replay memory D to size N
Initialize action-value-function Q with random weights θ
Initialize target action-value-function Q̂ with random weights θ− = θ
for episode = 1, M do

Initialize state s1 = {x1} and preprocess sequence ϕ1 = ϕ(s1)
for t = 1, T do

With probability ε select random action at
Otherwise select at = argmaxaQ(ϕ(st), a; θ)
Execute action at in emulator and observe rt and image xt+1
Set st+1 = st, at, xt+1 and process ϕt+1 = ϕ(st+1)
Store transition (ϕ, at, rt, ϕt+1) in D
Sample a minibatch of transitions (sj, aj, rj, sj+1) from D

Set yj :=

{
rj if episode terminates at step j + 1
rj + γ ·maxa′ Q̂(ϕj+1, a′; θ−) otherwise

Perform a gradient step on (yj −Q(ϕj, aj; θ))2 with respect to θ

Every C steps reset Q̂ = Q
end for

end for

14

1 Reinforcement Learning

Now, I’d like to point out some of the details of the algorithm.

Experience replay

To train the neural network, we first store the current state, the taken action, the gained
reward and the next state for all the steps of the game. After a lot of simulated games,
we train the model based on random mini-batches of the memorized experiences.

Two neural networks

As you might have noticed, in the algorithm there are two neural network used. One is
updated during the experience replay and the other does the predictions for the taken
actions. When a certain amount of mini-batches are trained, the decision network will
be updated. The reason for this process is that it helps to stabilize the learning of the
non-linear function.

Loss function

As you can see in equation (1.14), deep Q-learning often uses a mean squared error loss.

loss = (r + γ ·maxa′ Q̂(s′, a′)−Q(s, a))2 (1.14)

where:

r: reward
γ: discount factor
a’: next action
a: action action
s’: next state
s: state

Q̂: target network
Q: prediction network

If you are using a library like Keras [Cho18], you only have to provide the state and
the target value as input for the neural network and set the loss function to the mean
squared error.

Exploration

To reduce the problem of getting stuck in a local minima, we take a random action with
a certain possibility. In algorithm 1, this is shown with probability ε to select a random
action at.

15

1 Reinforcement Learning

1.4.2 Example

To get a better understanding of deep Q-learning, let’s reconsider our Grid World ex-
ample from 1.3.1 and change the Q-leaning action-value-function to a deep Q-learning
action-value-function.

Implementation

1. Since neural networks work on NumPy, we need a helper function that brings the
coordinates into the right shape. This is shown in listing 1.5.

� �
1 def position_to_state(x, y):
2 state = np.zeros(16, dtype='float32')
3 state[4 * y + x] = 1.
4 return np.expand_dims(state, axis=0)� �

Listing 1.5: position to state

2. The agent stores played games to train the neural network. Further, it implements
an act method that recommends actions based on the decisions of the neural net-
work and provides the related neural network model. See in listing 1.6.

� �
1 class Agent:
2 def __init__(self, gamma=0.95, exploration_rate=0.9):
3 self.gamma = gamma
4 self.exploration_rate = exploration_rate
5 self.memory = deque([], maxlen=1000)
6 self.model = self.get_model()
7 self.target_model = self.get_model()
8
9 def get_model(self):

10 model = Sequential()
11 model.add(Dense(24, input_shape=(16,), activation='relu'))
12 model.add(Dense(24, activation='relu'))
13 model.add(Dense(4, activation='linear'))
14 model.compile(loss='mse', optimizer=Adam(lr=0.01))
15 return model
16
17 def remember(self, state, action, reward, next_state, done):
18 self.memory.append((state, action, reward, next_state, done))
19
20 def replay(self):
21 batch = sample(self.memory, 100) if len(self.memory) > 100 else self.memory
22 for state, action, r, next_state, done in batch:
23 target = r
24 if not done:
25 state = position_to_state(state[0], state[1])
26 next_state = position_to_state(next_state[0], next_state[1])
27 target = r + self.gamma \
28 * np.amax(self.target_model.predict(next_state)[0])
29 target_values = self.model.predict(state)
30 target_values[0][actions.index(action)] = target
31 self.model.fit(state, target_values, epochs=1, verbose=0)
32 self.target_model.set_weights(self.model.get_weights())
33
34 def act(self, x, y):

16

1 Reinforcement Learning

35 state = position_to_state(x, y)
36 if np.random.rand() >= self.exploration_rate: @\label{line:exploration}@
37 return choice(actions)
38 act_values = self.model.predict(state)
39 return actions[np.argmax(act_values[0])]
40
41 def train(self, episodes=1):
42 for _ in range(episodes):
43 x, y = randint(0, 2), randint(0, 2)
44 while not (x == 0 and y == 0):
45 action = self.act(x, y)
46 next_x, next_y = action(x, y)
47 done = False if not (x == 0 and y == 0) else True
48 self.remember(state=(x, y), action=action, reward=reward[x, y, action],
49 next_state=(next_x, next_y), done=done)
50 x, y = next_x, next_y
51 self.replay()
52
53 def run(self, x, y):
54 action_counter = 0
55 self.exploration_rate = 1.1
56 while not (x == 0 and y == 0):
57 action = self.act(x, y)
58 x, y = action(x, y)
59 action_counter += 1
60 return action_counter� �

Listing 1.6: reinforcement learning agent

Important corner points to mention about the agent are the fact that it uses two neural
networks, a model to train after every decision and a sporadically updated target model.
Further, there is the act method that that takes with the probability of the exploration
rate a random action or lets the neural network decide(listing 1.6, line 33).

2. To verify the result, we can train and run the agent. See listing 1.7.

� �
1 agent = Agent()
2 agent.train(episodes=1000)
3
4 for start_x, start_y in [(2, 2), (2, 1), (1, 1)]:
5 print('Start:({},{}) It took {} actions to the goal.'
6 .format(start_x, start_y, agent.run(start_x, start_y)))
7
8 '''
9 Start:(2,2) It took 4 actions to the goal.

10 Start:(2,1) It took 3 actions to the goal.
11 Start:(1,1) It took 2 actions to the goal.
12 '''� �

Listing 1.7: train agent

As you can see in listing 1.7, after the training phase, the agent takes actions that led
to an optimal path through the Grid World.

17

1 Reinforcement Learning

Result

To visualize the output, we let the neural network predict all the fields and plotted the
values for all the possible actions. The result is listed in table 1.2. As you can see, if you
follow a greedy strategy considering the values of the table, you end up with a shortest
path through the Grid World.

(0,0)

←: 355.4
→: 329.5
↑: 359.6
↓: 328.5

(1,0)

←: 438.8
→: 402.5
↑: 420.4
↓: 398.5

(2,0)

←: 421.2
→: 388.0
↑: 406.7
↓: 384.6

(0,1)

←: 406.5
→: 385.5
↑: 438.5
↓: 389.1

(1,1)

←: 416.8
→: 381.9
↑: 420.2
↓: 378.1

(2,1)

←: 395.7
→: 365.4
↑: 400.9
↓: 363.3

(0,2)

←: 389.6
→: 369.7
↑: 418.7
↓: 373.5

(1,2)

←: 392.6
→: 363.7
↑: 398.4
↓: 362.3

(2,2)

←: 375.4
→: 352.9
↑: 384.5
↓: 354.4

Table 1.2: values of the neural network

18

Glossary

Go Go is strategy board game with the goal of surrounding more territory than your
opponent. 14

loss function A quantity that represents a measure of success for the task at hand. 15

NumPy NumPy is the fundamental package for scientific computing with Python. 16

Sarsa State–action–reward–state–action is an algorithm belonging to the temporal dif-
ference techniques for learning a markov decision process policy. 9

19

Bibliography

[Bel54] Richard Bellman. “The theory of dynamic programming”. In: Bulletin of the
American Mathematical Society 60.6 (1954), pp. 503–515.

[Cho18] François Chollet. Keras: The Python Deep Learning library. June 2018. url:
https://keras.io/.

[DD53] Joseph L Doob and Joseph L Doob. Stochastic processes. Vol. 7. 2. Wiley
New York, 1953.

[Dij59] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271.

[For73] G David Forney. “The viterbi algorithm”. In: Proceedings of the IEEE 61.3
(1973), pp. 268–278.

[Mni+15] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (2015), p. 529.

[MU49] Nicholas Metropolis and Stanislaw Ulam. “The monte carlo method”. In:
Journal of the American statistical association 44.247 (1949), pp. 335–341.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. Vol. 1. 1. MIT press Cambridge, 1998.

[Sil18] David Silver. UCL Course on RL. June 2018. url: http://www0.cs.ucl.
ac.uk/staff/d.silver/web/Teaching.html.

[Sut18] Rich Sutton. The reward hypothesis. June 2018. url: http://incompleteideas.
net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html.

[Wat89] Christopher John Cornish Hellaby Watkins. “Learning from delayed rewards”.
PhD thesis. King’s College, Cambridge, 1989.

20

https://keras.io/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

	Reinforcement Learning
	Terminology
	Approaches
	Q-Learning
	Deep Q-Learning

	Glossary
	Bibliography

